MARATHON OIL COMPANY

P.O. Box 2690 Cody, WY 82414-2690

ATT. Roger Thompson

AB2588 TOXIC EMISSIONS TESTING SOUTH COLES LEVY SUPERIOR ENGINE C, INGERSOLL RAND ENGINE #1 AND GLYCOL REBOILER UNIT July 7-9, 1992

Prepared By:

BTC ENVIRONMENTAL, INC. 1536 Eastman Avenue Ventura, CA 93003

> Job Number 13045

Laboratory Report Number 292-116

Test Team Leader Mark R. Patrick

Results Verified By Tom Porter

TABLE OF CONTENTS

1

· ·

1

1

- 1

			Page
	one of Dec	to the control of the	
Summ	nary of Res	Ingersol Rand Engine #1	2
	A. B.	Superior Engine #C	5
•	Б. С.	Glycol Reboiler Unit	8 - 2 - 4 - 2
	0.	Oly Col Mose Time	
1.	Introduct	ion and Sampling Procedures	10
1.	A.	Introduction	11
	B.	Sampling & Analytical Procedures	12
			14
11.	Calculation	ons The second Freeign #1	15
	A.	Ingersol Rand Engine #1	16
		1. PAH's	22
		2. BTXE & Propylene	23
		3. Formaldehyde	24
		4. Acetaldehyde	25
	_	5. Acrolein	26
	В.	Sugarior Engine #C	27
		1. PAH's	. 33
		2. BTXE & Propylene	34
		3. Formaldehyde	35
		4. Acetaldehyde	36
	_	5. Acrolein	37
	C.	Glycol Reboiler Unit	38
		1. BTXE	39
		2. Non Methane Hydrocarbons	40
		3. Hydrogen Sulfide	43
	•	4. Glycol Ethers	
111.	Moistur	e & Flowrate Determinations	46
****	Α.	Ingersol Rand Engine #1	47
	В.	Superior Engine #C	51
	C.	Glycol Reboiler Unit	. 55
		and Analysis	59
٧.		ory Analysis	60
	Α.	Impinger Weights	
	В.	Formaldehyde, Acetaldehyde & Acrolein (AtmAA #91922	62
	C.	PAH's (Calscience #92-07-112 & 92-07-113)	68
	D.	Glycol Ethers (Performance Analytical #3359)	70
	E.	BTXE & Propylene - Engines (BTC #921763)	79
	F.	BTXE & Propylene - Engines Chromatograms	106
	G.	Non Methane Hydrocarbons & BTXE (BTC #921730)	113
	H.	Non Methane Hydrocarbons & BTXE Chromatograms	110
۷I.	. Method	ology	140
71.	A.		141
	В		144
	Č		149

TABLE OF CONTENTS (Cont)

vi i	Raw Data		151
VII.	A.	ingersol Rand Engine #1	152
	۸.	1. Flowrates	153
		2. PAH's	156
		3. Strip Charts	159
		4. Engine Data Sheets	165
	В.	Superior Engine #C	166
	U.	1. Flowrates	167
		2. PAH's	170
		3. Strip Charts	173
		4. Engine Data Sheets	180
	C.	Glycol Reboiler Unit	181
	. 0.	1. Flowrates	182
VIII	Quality A	SSULLANCE	183
7111.	A.	Dry Gas Meter Calibration	184
	В.	Pitot Tube Calibrations	185
	C.	Pyrometer Calibration	187
. •	D.	Nozzles	188
	Ē.	Calibration Gases	193
	F.	Continuous Analyzer Linerity Graphs	195
	G.	Sample Pump Calibrations	197
	Н.	Chain of Custodies	200

ENVIDONMENTAL

SUMMARY OF RESULTS INGERSOLL-RAND ENGINE #1

	RUN 1	RUN 2	RUN 3	AYERAGE
BENZENE		A 77	0.13	0.21
pp m ∨	0.12	0.37	0.0010	0.0015
lb/hr	0.0009	0.0028	0.0010	0.00
TOLUENE	_		0.05	0.10
ppmv	0.15	0.11	0.0004	0.0009
lb/hr	0.0013	0.0010	0.0004	0.000
ETHYLBENZENE			0.02	0.04
ppmv	0.06	0.03		0.0004
lb/hr	0.0006	0.0003	0.0002	0.000
XYLENE			0.15	0.29
ppmY	0.29	0.27		0.0029
lb/hr	0.0045	0.0017	0.0015	0.0023
PROPYLENE			< 0.10	< 0.10
pp m v	< 0.10	< 0.10		< 0.0004
lb/hr	< 0.0004	< 0.000⁴	< 0.0004	(0.000 1
FORMALDEHYDE				8.7
pp m v	-	_	_	0.025
* lb/hr	-	-	-	0.020
ACETALDEHYDE				0.03
ppm Y	-	-	-	0.00013
lb/hr	-	-	_	0.00010
ACROLEIN				0.006
ppmv	_	-	-	0.00003
lb/hr	-		-	U. UUUUS

ENVIRONMENTAL 3

POLYCYCLIC AROMATIC MYDE TO THE SUMMARY

CHAR AL

Client: Marathon Oil

Site: Taft Gas Plant

Unit : Engine #1

T std:

Date: 7/9/92

b#: 13045

Lab #: 292-116

RESULTS in Whr

RUN *

2

Compound

Name

1

3

AVERAGE

Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

0.000168 0.000126 0.000198 0.000017 0.000022 0.0000 i2 < 0.000003 < 0.0000**2** < 0.000003 800000.0 0.000014 0.00009 0.000034 @_J0**00**24 0.000033 0.000005 0.000003 0.000004 0.000006 0.000016 0.000009 0.000017 0.0000005 0.000008 < 0.000003 < 0.0009**02** < 0.000003 < 0.000003 < 0.000003 < 0.000002 < 0.000014 < 0.000011 < 0.000015 < 0.000014 < 0.000011 < 0.000015 < 0.000014 < 0.000015 < 0.000011 < 0.000014 < 0.000011 < 0.000015 < 0.000014 < 0.000011 < 0.000015 < 0.000014 < 0.000011 < 0.00<u>0</u>015

0.000165 0.000302 < 0.000002 0.000010 0.000031 0.000004 0.000010 0.000010 < 0.000003 < 0.000002 < 0.000011 < 0.000013 < 0.000013 < 0.000013 < 0.000009 < 0.000013

£.000 611

BTC Environmental, Inc. - 1992

uses Full diffect as a value

ENVIRONMENTAL NCORPORATED

SUMMARY OF RESULTS SUPERIOR ENGINE C

	RUN 1	RUN 2	RUN 3	AYERAGE
BENZENE			- 40	0.51
ppmv	0.43	0.64	0.46	0.018
lb/hr	0.015	0.023	0.016	U.U10
TOLUENE			200	0.17
ppmy	0.13	0.12	0.26	0.007
lb/hr	0.005	0.005	0.011	0.007
ETHYLBENZENE				0.07
ppmv	0.05	0.06	0.09	0.003
lb/hr	0.002	0.003	0.004	<i>0.003</i>
XYLENE				0.46
ppmv	0.40	0.35	0.63	0.46
lb/hr	0.019	0.017	0.030 ···	0.022
PROPYLENE				7.6
ppmY	3.4	3.7	<i>3</i> .7	3.6
lb/hr	0.065	0.070	0.070	0.068
FORMALDEHYDE			, , , ,	90
ppmv	The second secon	and the same and t		1.22
ib/hr	-	-	-	1.22
ACETALDEHYDE	e e e e e e e e e e e e e e e e e e e			1.4
pp m Y	_	· 		
lb/hr	-	-	. -	0.028
ACROLEIN				A 1A
<i>ppm</i> ∀	-	· -	_	0.19
lb/hr	-	-		0.005

ENVIRONMENTAL LINCORPORATED

POLYCYCLIC ARGRESTED MEDROCARECES (C.N.) SWIMARY

J.AIS -119

Client: Marathon Oil

Site: Taft Gas Plant

Unit : Engine C

T sid: 50___

Date: 7/8/92

Lab *: 292-116

SESULTS in 1b/5/

Compound Name RUN *

2

3

AVERAGE

Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene

0.002733 0.002382 0.002433 9.000044 0.000155 0.000148 < 0.000011 < 0.0000111 < 0.000014 0.000041 0.000050 0.000042 9.000694 0.000642 0.000676 0.000019 0.000025 0.000063 9.000381 0.000192 0.000301 0.000150 9.000386 0.000300 < 0.000011 < 0.000014 < 0.000011 9.000026 < 0.000014 0.000026 < 0.000071 < 0.000056 < 0.000054 < 0.000056 < 0.000071 < 0.000054 < 0.000071 < 0.000056 ~ 0.000054 < 0.000056 < 0.000071 < 0.000054 < 0.000071 < 0.000056 < 0.000054 < 0.000056 < 0.000071 < 0.000054

0.002516 0.000302 < 0.000010 0.000044 0.000671 0.000036 0.000291 0.000278 < 0.000012 < 0.000020 < 0.000051 < 0.000060 <~~0.000060 < 0.000060 < 0.000039 < 0.000060

£.000451

BTC Environmental, Inc. - 1992

all detent

SUMMARY OF RESULTS GLYCOL REBOILER UNIT

	RUN 1	RUN 2	RUN 3	AYERAGE
BENZENE			1 100	<i>853</i>
ppmY	630	<i>830</i>	1,100	0.032
1b/hr	0.023	0.031	0.041	0.032
TOLUENE			. 200	1,200
ppmY	1,100	1,300	1,200	0.052
lb/hr	0.048	0.057	0.052	0.032
ETHYLBENZENE				<i>35</i> 7
ppmY	<i>330</i>	450	290	
lb/hr	0.017	0.023	0.015	0.018
XYLENE			4.000	2 200
ppmv	2,000	2,800	1,800	2,200
lb/hr	0.100	0.141	0.090	0.111
NON-METHANE HYD	ROCARBONS			29,900
ppmY	23,100	29,300	37,300	
lb/hr	0.38	0.50	0.65	0.51
HYDROGEN SULFIDE				
ppmy	55,200	62,800	92,000	79,000
grains/100 dscf	3,470	3,940	5 780	4,480
GLYCOL ETHERS, 1b	hr	*		
2-Methoxyethanol	< 0.000002	< 0.000002	< 0.000002	< 0.000002
2-Ethoxyethanol	< 0.000002	< 0.000002	< 0.000002	< 0.000002

< 0.000002

* see next document and Form PRO

< 0.000002

Source So

< 0.000002

< 0.000002

2-Ethoxyethanol

2-Butoxyethanol

ENVIRONMENTAL

INTRODUCTION

On July 7-9, 1992, BTC personnel performed AB2588 Texic Emission Testing at the South Coles Levee Gas Plant located in Kern County, California. Testing was performed on the Ingersoll Rand Engine #1, Superior Engine #C and the Glycol Reboiler Unit. The facility obtains field natural gas and uses the compressor engines to compress the gas prior to the distribution to the gas plant for distribution as sales gas to Southern California Gas Company and for further fractionating into other light weight petroleum products.

Superior Engine C: Superior Model 12SGTB, S/N 317309. The engine is a turbocharged 2000 HP natural gas fired lean burn IC engine (PTO #2024035). The engine is identified as Engine C.

Ingersoll Rand Engine #1: Ingersoll-Rand Model PCG-8, S/N 8GP-2123. The engine is a 360 HP natural gas fired rich burn IC engine (PTO #2024026). The engine is equipped with a catalytic converter attached to the exhaust duct and operates a 250KW/2400V generator. A flue gas oxygen analyzer is utilized in the exhaust to monitor oxygen content.

Glycol Reboiler Unit: The steam heated glycol reboiler removes water from field gas by allowing the field gas to pass through the glycol solution. The glycol is heated by steam to remove the entrained water and then returned to the stripper reservoir. The dewatered natural gas is then piped to the gas plant for further processing.

SAMPLING AND ANALYTICAL PROCEDURES

PAH's: CARB Method 429 was used for the Polycyclic an matic Hydrocarbons sampling. The sample train consists of a glass nozzle, heated glass or terion probe, heated glass fiber filter, water cooled condenser, water cooled XAD resin cartridge and cooled impingers. The sampling on the Superior engine was conducted isokinetically for 120 minutes with a total of 12 sample points from the horizontal port. The ingersol-Rand engine utilized a single point and a single port. All samples were retrieved in the field. A travel blank was prepared and taken on site and returned to the laboratory and treated as though it were a sample and the XAD resin was spiked as outlined in the method. The samples were sent to Calscience Environmental for anlysis by GC/MS. Results are reported in µg per sample and lb/hr. See the attached sample train diagram.

FORMALDEHYDE. ACETALDEHYDE & ACROLEIN: CARB Method 430 was used. The sample train consists of a teflon probe connected to two (2) midget impingers containing DNPH absorption solution and the third impinger contains silica get. The sampling was conducted in triplicate for 60 minutes at a constant rate of approximately 0.5 liter per minute. New Teflon probes were used for each device. Triplicate travel blanks were prepared and taken on site and returned to the laboratory and treated as though they were samples. The samples were retrieved in the field, stored on ice and returned to the laboratory. A chain of custody was prepared and the samples along with the travel blank submitted to AtmAA, Inc. for analysis by HPLC. Results are reported in µg per sample and lb/hr.

NOTE: Due to excessive moisture in the Glycol Reboiler unit it was decided on site between BTC and SJUAPCD that testing would not be conducted for formaldehyde.

BENZENE, TOLUENE, ETHYLBENZENE, XYLENE & PROPYLENE: CARB Method 410A was used. The sampling system consisted of a stainless steel or Teflon probe, Teflon connecting line, a 5-10 liter Tedlar bag and a leak free vacuum chamber. The Tedlar bag was placed into a vacuum chamber. The Teflon connecting line was attached directly to the Tedlar bag. Sample was allowed to enter the Tedlar bag at a constant rate by applying a vacuum to the chamber and the Tedlar bag was allowed to fill over a 40 minute period of time. After the bag was filled, the bag was removed from the chamber, labeled and placed into a black plastic bag. The samples along with a travel blank were returned to the laboratory for analysis. A chain of custody was prepared and submitted to BTCE for analysis. The BTEX samples were analyzed by gas chromatography utilizing a Photoionization detection (PID) system. The Propylene was analyzed using gas chromatography utilizing a Flame Ioniozation detection (FID) system. The results are reported in ppmv and lb/hr.

GLYCOL ETHERS: NIOSH Method 1403 was used to determine Glycol Ethers. The sample train consists of a Teflon sample line, an iced water dropout, a charcoal absorption tube and a calibrated sample pump. The exhaust gases were sampled in triplicate at a constant rate of approximately 0.5 liters per minute for a period of 120 minutes. The condensate was recovered and placed into a YOA bottle and kept on ice. The charcoal tubes were capped and stored on ice. The the charcoal tubes were submitted to Performance Analytical and analyzed for 2-Methoxyethanol, 2-Ethoxyethanol & 2-Butoxyethanol by gas chromatography utilizing a Flame Ionization detection (FID) system. Results are reported in lb/hr. There was less than 0.5 ml of condensate in each of the drop outs and therfore the dropouts were not analyzed.

ENVIRONMENTAL -

SAMPLING AND ANALYTICAL PROCEDURES (Cont)

of the Glycol Reboiler. The sample train consists of a Tellon sample line connected to five (5) midget impingers and a sample pump connected to a dry gas meter. The first impinger contains 3% H2O2, the second impinger is dry, the third and fourth impingers contain Cadmium Sulfate solution and the fifth impinger contains silica gel. The sampling was conducted at a constant rate of approximately 1 liter per minute for 30 minutes. After sampling, the sample train was purged with clean air for 10 minutes. The Cadmium Sulfate solution was recovered and analysis was performed in the field by lodine/Thiosulfate titration.

CXYGEN AND CARBON DIOXIDE: CARB Method 100 was used. The oxygen was determined by the use of a Teledyne 320AX electrochemical analyzer. The carbon dioxide was determined by the use of an ACS (Fuji) 3300 NDIR analyzer. The analyzers were calibrated with $\pm 1\%$ NBS traceable calibration gas before and after each run. The 3ycol Reboiler exhaust gas was assumed to be ambient air of 20.9% 02 and 0.05% CO2.

EXHAUST VELOCITY. MOISTURE & FLOWRATE: CARB Method 1, 2 & 4 were used for the velocity & flowrate determination for the Superior engine. A total of 24 traverse points were utilized (12 at each port). The Ingersol-Rand engine was determined using EPA Method 2C. A total of 12 traverse points were taken (6 at each port). The Gycol Reboiler was measured using EPA Method 2C with a total of eight (8) traverse points (4 points at each port). An "S" type pitot was used due to the high moisture content in the exhaust gas. Three (3) traverses were conducted and a single moisture sample were taken at each device.

All results were calculated according the IVUAPCD standard conditions of 60°F and 29.92 in of Hg. If you have any questions regarding the testing procedures or the calculations, please contact the undersigned at (805) 644-1095.

Respectfully submitted,

BTC/ ENVIRONMENTAL, INC.

Mark Patrick

Test Supervisor

Reviewed By:

Tom Porter

Vice President - Air Test Division

SEP 03 '92

Environmental

and Safety

August 31, 1992

Marathon Oil Company PO Box 2690 Cody, WY 82414-2690

Attention: Roger Thompson

Re: AB2588 Toxic Emissions Testing at South Coles Levy

Dear Mr. Thompson:

I have included revised calculations and summary of the Glycol Reboiler H2S emmissions. The original spreadsheets contained errors pertaining to the calculation of stack gas volume which was drawn for the H2S testing. The corrected spreadsheets use a higher volume which greatly reduces the concentration of H2S.

If you have any questions, please feel free to contact Tom Porter or myself.

Best Regards,

Mark` Patrick

Testing Supervisor

Mark R. Patinh

SUMMARY OF RESULTS GLYCOL REBOILER UNIT

		·		
	RUN 1	FUN 2	RUN 3	AVERAGE
BENZENE				
ppmv	630	<i>ā</i> 3 0	1,100	<i>853</i>
Ìb/hr	0.023	0.031	0.041	0.032
TOLUENE			er e	
ppmv	1,100	1,300	1,200	1,200
Ĭb/hr	0.048	0.057	0.052	0.052
ETHYLBENZENE				
ppmv	330	450	290	357
lb/hr	0.017	0.023	0.015	0.018
XYLENE				
ppmv	2,000	2,800	1,800	2,200
lb/hr	0.100	0.141	0.090	0.111
NON-METHANE HYD	ROCARBONS			
ppmv	23,100	29,300	37,300	29,900
lb/hr	0.38	0.50	0.65	0.51
HYDROGEN SULFID	E			
ppmv	38		6.4	49
grains/100 dscf	2.4	2.7	4.0	/ 3.0 /
lb/hr	0.10	0.12	0.17	0.13
GLYCOL ETHERS,	Ib/hr	*		
2-Methoxyethanol		< 0.000002	< 0.000002	0.000002
2-Ethoxyethanol	< 0.000002	< 0.000002	< 0.000002	< 0.000002
2-Butoxyethanol	< 0.000002	< 0.000002	< 0.000002	< 0.000002

still wray! See form PRO

Wrong!. was I pomor

HYDROGEN SULFIDE (H2S) ANALYSIS ASTM D 2385

Client : Marathon Oil
Site : Glycol Reboiler

Site : Glycol Reboiler
Sample ID : H2S - Run 3

Date : 7/7/92

Job# : 13045

Lab#: 292-116

Stack Exhaust Flowrate, Qstd: Dry Gas Meter ID Number : В Meter Factor, (Mf): 1.0000 ۰F 60 Standard Temperature, (Tstd): Volume 30 ml 10 g/l (*) CdSO4 Solution: 40 g/l () **Averages** Start Stop 14:19 min. 13:42 Sampling Time: in. Hg 29.80 29.80 29.80 in. Ha Barometric press, (Pb): ۰F 80 F 80.0 80 DGM Temperature, (Tm): 0.243 cf Sample Volume, (Vs): 0.000 Stop Vol - Start Vol Sample Gas Volume, (Vs) 0.243008 dcf (Tm,avg+460)/(Tstd+460)Temp. Corr. Factor, (Tcf) 1.038 Blank (Nt * Tb) / Ib 12 Normality, (Ni) lodine, (lb): 3.0 ml 0.0157 2.37 ml Thiosulfate, (Tb): Thiosulfate, (Nt): 0.0199 Titration 3.0 ml lodine, (Vi) Thiosulfate, (Vt): 0.58

HYDROGEN SULFIDE (H2S) ANALYSIS CARB Method 11

Client : Marathon Oil
Site : Glycol Reboiler

Sample ID: H2S - Run 1

Date : 7/7/92

Job# : 13045

Lab#: 292-116

Stack Exhaust Flowrate, Qstd: В Dry Gas Meter ID Number : Meter Factor, (Mf) : 1.0000 60 Standard Temperature, (Tstd): Volume 30 CdSO4 Solution: 40 g/l () 10 g/l (*) **Averages** Stop Start min. 10:33 11:03 Sampling Time: 29.82 in. Hg 29.82 29.82 in. Hg Barometric press, (Pb): 82.0 ۰F 82 82 DGM Temperature, (Tm): 0.197 cf Sample Volume, (Vs): 0.000 Stop Vol - Start Vol Sample Gas Volume, (Vs) 0.197000 dcf (Tm,avg+460)/(Tstd+460) Temp. Corr. Factor, (Tcf) 1.042 Blank (Nt * Tb) / Ib 3.0 12 Normality, (Ni) lodine, (lb): ml 2.37 0.0157 Thiosulfate, (Tb): ml Thiosulfate, (Nt): 0.0199 Titration 3.0 lodine, (Vi) : ml 1.50 ml Thiosulfate, (Vt):

THYDROGEN SULFIDE (MIS) ANALYSIS CARB Matched 1

Client : Marathon Oil

Site : Glycol Reboiler

Sample ID : H2S - Run 2

Date : 7/7/92

Job# : 13045

Lab#: 292-116

	3					
			Dry Gas Meter ID	Number :	В	
	1.0000					
		Sta	ndard Temperature	, (Tstd) :	60	°F
CdSO4 Solution:	40 g/l ()	10 g/l (*)		Volume	30	ml
	Start		Stop		Averages	
Sampling Time:	12:20		13:05	min.		
Barometric press, (Pb):	29.82		29.82	in. Hg	29.82	in. Hg
OGM Temperature, (Tm):	82		82	F	82.0	_°F
Sample Volume , (Vs):	0.000		0.296	cf		
		Samo	le Gas Volume, (Vs)	=	Stop Vol - Start	Voi
			,	=	0.295551	_dct
		Temp.	Corr. Factor, (Tcf)	. =	(Tm,avg+460)/(Tstd+46
					1.042	
en de la companya de	Blank	<u> </u>	e and the second			-
lodine, (lb) :	3.0	mi	12 Normality, (Ni)	=	(Nt * Tb) / lb	
Thiosulfate, (Tb):	2.37	ml			0.0157	_N
Thiosulfate, (Nt):	0.0199	N				
	Titration					
			- ·			
lodine, (Vi) :	3.0	mi ·				